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ABSTRACT
The influence of microorganisms 
in the gastrointestinal tracts of 
nonruminants has long been 
considered nonexistent or almost 
nonexistent. However, past studies 
have demonstrated the colonization 
of gut microbiota and its potential 
influence on efficiency traits in a wide 
variety of livestock species. 

Since efficiency traits are currently 
becoming more popular, the present 
study addresses the question of 
how such microbial information 
from nonruminants can be used 
in scientific approaches to animal 
genetics and breeding in the 
subject area of animal efficiency and 
performance. 

The main current statistical 
methods and models that consider 
gut microbial colonization will 
be explained. Ways that quantify 
microbial influences on quantitative 
traits, that explain hologenomic 
(host genome plus microbiota 
genome) approaches and that 
consider causal relationships 
between microbial features along 
with efficiency traits and host 
genetics, are presented here.
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INTRODUCTION
The efficiency of livestock production 
is of growing interest, especially 
in terms of resource conservation, 
environmental protection, animal 
welfare and food-feed competition. 
Feed efficiency can be divided into 
digestive and metabolic efficiency 
(Martin et al., 2021; Puillet et al., 2016). 
Digestive efficiency reflects the ability 
to absorb nutrients from ingested feed 
in the gastrointestinal tract (GIT) into 
the bloodstream, whereas metabolic 
efficiency is affected by allocation 
and reallocation processes, i.e., the 
conversion of absorbed nutrients into 
animal products.

The GITs of poultry harbor a variety 
of microorganisms (Apajalahti et al., 
2004) influenced by external factors 
such as litter or diet (Borda-Molina et 
al., 2018; Kers et al., 2018) and by host 
genetics (Haas et al., 2022; Meng et 
al., 2014; Mignon-Grasteau et al., 2015; 
Wen et al., 2021; Zhao et al., 2013). 

These members of the bacterial 
microbiota are not silent 
roommates, as they live in 
symbiosis with the host and are 
therefore involved in a number 
of processes in the digestive 
eff iciency pathway, e.g., eff iciency, 
utilization of nutrients, immune 
system and animal health (Maki et 
al., 2019; Rodehutscord et al., 2022; 
Stanley et al., 2014; Yadav and Jha, 
2019). 

Figure 1 shows a summary of factors 
influencing the colonization of the 
GITs by microorganisms.

Figure 1.
Factors influencing the 
animal gut microbiota. 
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MICROBIAL DATA
The interplay between the host, its 
gut microbiota and efficiency is 
complex and not yet fully understood. 
Nevertheless, the use of microbiota 
data has arrived in animal science 
and breeding. To use microbiota 
in genetic-statistical analyses, a 
powerful source of information is 
needed. In studies, mainly targeted 
amplicon sequencing of the 16S 
ribosomal RNA (rRNA) gene is applied 
(Borda-Molina et al., 2018; Maltecca 
et al., 2020). 

For this, the DNA is extracted, and 
a specific target region (amplicons) 
of the small ribosomal subunit RNA 
gene is amplified. The 16S rRNA genes 
are conserved in microorganisms 
and contain a hypervariable region 
that allows for delineation of the 
microorganisms. 

The resulting sequences are 
then clustered into operational 
taxonomic units (OTUs) based 
on bioinformatic processing 
using a similarity threshold, or 
the sequences are differentiated 
into amplicon sequence variants 
(ASVs) based on single nucleotide 
changes. Subsequently, the 
sequences for subordinate 
ranks (e.g., phylum, genus) can 
be taxonomically assigned. 
Therefore, deep characterization 
of microbiota communities and 
their quantification via relative 
abundances can be achieved.

Another common technique is 
metagenomic shotgun sequencing 
(whole-genome sequencing) 
(Borda-Molina et al., 2018; Maltecca 
et al., 2020; Pérez-Cobas et al., 2020). 

The consideration of microorganisms 
in the GITs of nonruminants can help 
improve the digestibility of various 
nutrients, as well as performance 
traits, and it seems to be beneficial to 
consider gastrointestinal microbiota 
in animal breeding (e.g., Haas et al., 
2022; Khanal et al., 2020; Lu et al., 2018; 
Maltecca et al., 2019; Weishaar et al., 
2020). 

A deeper look at noteworthy 
statistical approaches in animal 
breeding that consider the 
bacterial colonization in the GITs of 
nonruminants (pigs and poultry) is 
compiled in this review. This review 
covers major microbial and genetic 
approaches but does not claim to be 
exhaustive.
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This approach allows the parallel 
sequencing of DNA from all 
microorganisms in the ecosystem 
(GIT sample) with a high degree of 
coverage for species differentiation. 

Metagenomics enables the 
collection of genomes and their 
corresponding genes and allows 
for the characterization of potential 
bacterial functions.

Since inexpensive and efficient 
sequencing methods to quantify the 
gut microbiota exist, the number 
of host microbiota studies has 
increased (Guevarra et al., 2019). The 
taxonomic classification of microbial 
data from the phylum to strain level 
is shown in Figure 2.

The GIT of poultry has various 
sections, with different digestion 
functions, and thus a differentiated 
settlement of microorganisms. The 
concentration of microbes increases 
in number from section to section 
and reaches its maximum in the 

paired ceca and the rectum (Yadav 
and Jha, 2019), and the distribution 
of the species in the different GIT 
sections is also different due to 
different habitat conditions (Yegani 
and Korver, 2008). For example, the 
crop, jejunum, and ileum are more 
likely to be home to bacteria of the 
family Lactobacillaceae and the 
caeca to the family Ruminocaccaceae 
(Witzig et al., 2015).

Microbial data are given as 
compositional data (in relative 
abundances in percent), which 
means that the data per animal 
are multivariate and have a unit 
sum, i.e., an animal has 100 percent 
over all detected microbial features. 
Therefore, many animals in the 
microbiota dataset have a relative 
abundance of zero for some microbial 
characteristics, which complicates 
the use of microbial data for some 
analyses.

Figure 2.
Taxonomic classification of microbial data from the 
phylum to strain level with the characterization potential
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As stated above, the microbial 
colonization of the GITs of 
nonruminants is influenced by 
host genetics. Some studies have 
estimated significant narrow sense 
heritabilities for different GIT sections 
and different microbial features. 
Without any differentiation of the 
study environments and designs, the 
heritabilities differ at the GIT section 
and the microbial database used. 

For example, heritabilities for bacterial 
genera in pig colon samples are in 
the range of 0.32 to 0.57 (Camarinha-
Silva et al., 2017) and bacterial genera 
in fecal samples are in the range of 
0.07 to 0.33 (Chen et al., 2018); in pig 
colons at the OTU level, the range is 
between 0.03 to 0.55 (Bergamaschi 
et al., 2020). 

Similar significant heritabilities could 
be found for chicken microbiota in 
fecal samples at the genus level, 
ranging from 0.21 to 0.79 (Meng et al., 
2014), and Wen et al. (2021) reported 
different heritabilities in different 
sections of the GIT at the genus level: 
in the duodenum from 0.44 to 0.62, 
in the jejunum from 0.31 to 0.44, in 

the ileum from 0.38 to 0.79, in the 
cecum from 0.36 to 0.87, and in the 
feces from 0.41 to 0.71. 

Lower heritabilities were reported 
in quail ileum at the genus level, 
from 0.04 to 0.17 (Haas et al., 2022). 
Additionally, heritabilities of the 
diversity (i.e., alpha diversity index) 
of the microbiota composition in 
pigs and poultry are shown in the 
literature in a range of 0.15 to 0.26, 
depending on the animal species, 
the respective GIT section, and the 
study design (Aliakbari et al., 2021; 
Déru et al., 2022a; Haas et al., 2023; 
Lu et al., 2018).

In addition to narrow-sense 
heritability, genetic correlation is 
also an important parameter in 
animal breeding. Several studies 
have estimated low to high genetic 
correlations between different 
microbial features and host efficiency 
traits. Aliakbari et al. (2021) and Déru 
et al. (2022a) found, for example, 
significant genetic correlations in 
pigs, Mignon-Grasteau et al. (2015) 
in chickens, and Haas et al. (2022) in 
Japanese quail. 

HERITABILITIES 
AND HOST GENETIC 
ARCHITECTURE 
OF MICROBIAL 
FEATURES
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Some studies have reported 
significant genomic regions for 
different microbial features (e.g., 
as genera, OTU, or alpha diversity 
index) and different animal species 
by using genome-wide association 
studies (GWAS) and quantitative 
trait loci (QTL) analyses (e.g., Haas et 
al., 2022; Haas et al., 2023; Wen et al., 
2021).

In animal breeding, heritability of the 
narrow sense is used to describe the 
relationship between the additive 
genotypic values of a trait and the 
phenotypic recording in a population. 
To quantify the relationship 
between the GIT microbiota and the 
recorded phenotype, the parameter 
microbiability was introduced by 
Difford et al. (2016). 

Microbiability describes the part of 
the phenotypic variation of a trait 
that is explained by the microbial 
composition in the GIT. The approach 
to calculate microbiability, i.e., the 
proportion of microbial variance 
in the phenotypic variance, is 
equivalent to calculating heritability 
using the random animal effect in a 
linear mixed model. 

However, the random animal effect 
is modeled by a covariance structure 
from a microbial relationship matrix 
M rather than the pedigree-based/
genomic relationship matrix used 
in the calculation of heritability. 
Different methods exist to build a 
microbial relationship matrix (He et 
al., 2022). A commonly used form is:

M=1/NXXT

with matrix X (n x N matrix, with 
n the number of animals and N 
number of microbial features), which 
contains the standardized and log-
transformed abundances of the 
microbial features (Camarinha-Silva 
et al., 2017).

MICROBIAL 
RELATIONSHIP 
MATRIX M AND 
MICROBIABILITY
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The animal microbiota correlation 
between two quantitative traits 
can be estimated with bivariate 
or multivariate microbial linear 
mixed models. Here, one does not 
use the pedigree-based/genomic 
relationship matrix as in genetic 
correlations but the microbial 
relationship matrix M. Medium to 
high animal microbiota correlations 
were found between different 
efficiency traits in quail (Vollmar et 
al., 2020) and pigs (Aliakbari et al., 
2022; Déru et al., 2022b).

Many studies have confirmed 
that the microbiome explains a 
substantial part of the phenotypic 
variation in efficiency traits (e.g., 
Verschuren et al., 2020 in pigs, 
Vollmar et al., 2020 in quail, and 
Wen et al., 2019 in chickens), and the 
animal microbial correlations are 
mostly significant and at high levels. 

This enables the use of gut microbiota 
as a potential predictor of complex 
traits in animals.

Classical GWAS are used to detect 
trait-associated SNPs via mixed 
linear models. It is a common 
tool for the detection of genomic 
regions involved in the expression 
of quantitative traits (Schmid and 
Bennewitz, 2017). A method to detect 
trait-associated microbial features is 
microbiome-wide association studie 
(MWAS) (Tiezzi et al., 2021; Vollmar et 
al., 2020). 

The relative abundance of a 
single microbial feature can be 
implemented as a fixed effect (fixed 
covariate) in a mixed linear model. 
Vollmar et al. (2020) modeled the 
random genetic animal effect in 
MWAS to model the population 
structure as in a GWAS.

The MWAS approach was designed 
to find parts of the respective 
microbiota class that are associated 
with the trait under consideration. 
The study of Vollmar et al. (2020) 
clearly showed that some substantial 
peaks could be found at the genus 
level. It should be noted that some 
microbial parts affected more than 
one efficiency trait, and some bacteria 
contributed more than others to 
the overall phenotypic variance of 
one trait. However, a polymicrobial 
influence is emerging in all traits. 

This method can be used to identify 
trait-associated bacterial features. 
Aliakbari et al. (2022) confirmed 
the polymicrobial MWAS results for 
feed efficiency and performance 

MICROBIOME-
WIDE ASSOCIATION 
ANALYSIS (MWAS)
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traits in pigs, and Wang et al. (2022) 
found higher effects for some 
trait-associated genera on the fat 
composition of pigs. 

It seems as if the identified microbial 
features are causal. However, the 
use of compositional data limits 
the identification of causality using 
MWAS results (Vollmar et al., 2020).

When the microbiability of a 
quantitative trait is greater than 
zero, microbiome information 
can be used to predict the trait 
phenotypes by microbial best 
linear unbiased prediction (MBLUP) 
(Camarinha-Silva et al., 2017) or by 
machine learning approaches (e.g., 
Maltecca et al., 2019). This requires 
a large reference population 
comparable to genomic selection.

In most studies, MBLUP has similar 
or even higher prediction accuracy 
than comparable genomic BLUP 
for the same feed efficiency 
characteristics (e.g., Verschuren et 
al., 2020, Weishaar et al., 2020, Haas 
et al., 2022). 

The main difference between 
microbial and genomic trait 
predictions is that the microbial 
predictions are not stable because 
the microbiota composition varies 
with the section of the GIT, animal 
age, and environmental factors 
(see Figure 1) (Maltecca et al., 2020; 
Weishaar et al., 2020). 

Part of the microbial composition 
is determined by host genetics. 
Hence, there exists an overlap 
when selecting either microbial or 
genomic prediction values (Ross 
and Hayes, 2022).

MICROBIAL TRAIT 
PREDICTIONS
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Efficency trait

Host genome Gut microbiota

Figure 3.
Relationships between efficiency traits, host genetics, and gut microbiota.

Host genetics and the gastrointestinal 
microbiota can influence quantitative 
traits. Simultaneously, the microbiota 
composition in the GIT is influenced 
by host genetics, which means that 
there exists a relationship between 
these three features (Figure 3). 

In most of the studies, these pathways 
were considered separately, either 
as genomic or microbial phenotypic 
predictions. However, we know that 
genetic and microbial variance are 
not independent, and therefore, to 
consider both direct genetic effects 
on a phenotype and indirect genetic 
effects via the microbiota, it may be 
beneficial to consider them together 
in a hologenomic approach. 

Therefore, the hologenome 
represents the entirety of the DNA 
of the host (host genome) and 
the DNA of the gut microbiota 
(metagenome) (Bordenstein and 
Theis, 2015; Estellé, 2019).

The simplest conceivable method 
would be to put the genomic and 
microbial relationship matrices 
together in a mixed linear model, as 
was done, for example, in Aliakbari 
et al. (2022) and Déru et al. (2022b). 

However, the problem is that 
interactions with independent 
covariates between markers 
and microbial features are not 
computable. Several studies have 
developed different methods to 
address this problem, and a brief 
overview is given in the following.

Weishaar et al. (2020) developed 
a two-step method that first used 
a microbial linear mixed model to 
predict the animal microbiota effect 
of the respective trait from microbial 
abundances and then a genomic 
linear mixed model to predict SNP 
effects for the previously predicted 
animal microbiota effect of the trait. 

HOLOGENOMIC 
APPROACH
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This method does not consider the 
genetic effects that directly affect 
the corresponding trait (not via the 
microbiome). For this reason, the 
authors used a selection index to 
separate the proportion of genes 
that influence the microbiota 
effects of a trait and the proportion 
of genes that directly influence the 
trait but not the microbes. 

This addresses the genes that 
explain the trait not only directly 
through a change in metabolic 
pathways but also indirectly through 
a change in the composition of the 
gut microbiota. 

This method was implemented to 
place more weight on the breeding 
values explained by the digestive 
pathway rather than the metabolic 
pathway, and selective breeding 
becomes possible. 

A related method was developed 
by Christensen et al. (2021). In their 
study, the authors decomposed the 
breeding value of a quantitative 
trait into two genetic effects by 
directly estimating the microbiota-
mediated breeding value and the 
residual breeding value of a trait, 
i.e., the genetic effects of the trait, 
without the genetic effects via the 
microbiome. 

The difference between the two 
methods is that Christensen et 
al. (2021) estimated the residual 
breeding value in a linear mixed 
model, whereas Weishaar et al. 
(2020) did so in a final step via the 
selection index. 

Khanal et al. (2020), Pérez-Enciso 
et al. (2021) and Qadri et al. (2022) 
considered both microbial features 
and host genetics together in one 
model and implemented different 
forms of interactions between host 
genomes and microbiomes.

The hologenomic selection 
approach mentioned above might 
enable the differentiated selection 
of the acquisition and reallocation 
process in animal efficiency. 

The goal is to adapt the trait-
specific microbial colonization 
in the GIT to put more weight on 
the acquisition pathway for better 
utilization or usability from feed 
components that can then be used 
in the bloodstream. 

This should somewhat reduce 
selection for metabolic efficiency, 
which creates a discrepancy 
between animal performance and 
health (Huber, 2018). However, 
metabolites produced by 
microorganisms can also alter the 
metabolic pathways of animals by 
producing short chain fatty acids. 

Thus, microbiota can also affect 
the metabolic effect, not just 
the digestive effect of efficiency 
(Weishaar et al., 2020). 

Hologenomic approaches 
considering only single traits 
and the interactions with other 
phenotypic expressions are of 
course not considered, and this 
still requires much research, but 
a first foundation to implement 
this in breeding practice has been 
developed. 
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Trait i Trait j

λ
i, j

In general, across the different 
studies, an improvement in the 
accuracy of trait prediction was 
observed when microbial data were 
included (e.g., Déru et al., 2022b; 
Khanal et al., 2020). 

However, there is still much room 
for improvement in the statistical 
representation of the covariance 
between the gastrointestinal 
microbiota and host genetics in 
terms of phenotypic traits.

The composition of the gut 
microbiota is partially under the 
genetic control of the host and 
can be used to improve genomic 
predictions of efficiency traits. 

Thus, it appears that the gut 
microbiota acts as a mediator 
between host genetics and efficiency 
traits, and it seems that the host 
genetic effect of efficiency traits is 
composed of a direct genetic effect 
of the trait and an indirect genetic 
effect via the modeling of the gut 
microbiota composition.

A tool to differentiate direct and 
indirect effects between traits is 
structural equation models (SEM), 
as introduced in animal breeding 
by Gianola and Sorensen (2004). 

These authors used structural 
coefficients between trait 
combinations in multivariate mixed 
model equations to estimate the 
rate of change of trait i through the 
recursive influence of trait j, i.e., the 
rate of change of trait i by the change 
of one unit of trait j (Figure 4).

The combination of phenotypes, 
host genetics, and microbial data 
in structural equation concepts was 
done in most cases by using a linear 
mixed model approach, where the 
microbial features were considered 
as phenotypic trait records. 

First, it was published by Saborío-
Montero et al. (2020) in methane 
emissions in dairy cows and by 
Haas et al. (2022) in phosphorus 
utilization and related traits in 
Japanese quail as a model species. 

Figure 4.
Recursive (directional) relationship between traits.

ARE GUT MICROBES 
THE CAUSAL DRIVER OF 
EFFICIENCY TRAITS?
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Low to high unidirectional 
relationships were found depending 
on the host species and traits under 
consideration. 

Tiezzi et al. (2021) also confirmed 
direct and microbiome-mediated 
host genomic effects on backfat 
traits in swine by using GWAS and 
MWAS in a causal framework.

Looking at a pool of different 
correlated phenotypes, 
dependencies or causal 
relationships between the traits 
are not easy to identify, e.g., does 
the animal consume more food to 
perform as genetically predisposed 
or does the animal perform because 
of increased feed intake. 

Bayesian networks can be 
used to detect such complex 
directional relationships between 
characteristics with a large dataset. 
Model residuals are used to remove 
any confounding variables such as 
gender, herd effect, test day effect, 
additive genetic effects, etc., that 
might distort the network (Rosa et 
al., 2011). 

By using a Bayesian learning 
algorithm, we found a stable causal 
network for three efficiency traits 
(body weight gain, phosphorus, 
and calcium utilization), one 
bone ash trait (tibia ash), and two 
microbial phyla (Firmicutes and 
Actinobacteria) in an F2-cross of 
750 Japanese quail (Figure 5). 

Figure 5.
Causal network obtained from a Bayesian network learning algorithm (PU: 
phosphorus utilization, CaU: calcium utilization, BWG: body weight gain).

ARE GUT MICROBES 
THE CAUSAL DRIVER OF 
EFFICIENCY TRAITS?
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Numbers on the arrows are 
bootstrap sample proportions 
(50,000 samples) indicating an 
existing arc (figures on the left) 
and the proportion of the direction 
(figures on the right). The causal 
structure between the efficiency 
and ash traits is logical from a 
biological point of view, but the 
connection with microbial features 
is novel.

Such causal networks can then be 
used in conjunction with SEM to 
quantify unidirectional relationships, 
which shows how host genomes 
can be used to map and understand 
causal structures among quantitative 
and microbiota traits. 

These results of the SEM can then 
be extended to SEM-GWAS on 
the basis of the causal network in 
connection to a GWAS, where the 
differentiation of SNP effects into 
direct and indirect effects can be 
performed (Momen et al., 2019; 
Pegolo et al., 2020). 

Many indirect SNP effects, which 
directly influence an upstream 
trait and exert an indirect influence 
via the recursive relationship, are 
probably not detected by a classical 
GWAS (Tiezzi et al., 2021).

The studies undertaken thus far 
in poultry and pigs have mainly 
considered feed or nutrient 
efficiency-related traits. 

Considering the effects of the 
microbiota on animal health, 
microbial colonization in the gut is 
closely linked to the immune system, 
e.g., the energy supply of the immune 
system through the production 
of short-chain fatty acids and the 
anti-infection barrier by inhibiting 
pathogens (Diaz Carrasco et al., 2019; 
Shang et al., 2018). 

Future breeding strategies for 
improved immune systems could 
consider microbial colonization in 
the GIT and stabilize a natural barrier 
to unwanted microorganisms, 
especially in the gut habitat (Yegani 
and Korver, 2008). 

For example, in poultry production, 
Salmonella and Campylobacter 
are unwanted microorganisms 
with zoonotic potential and some 
antibiotic resistance (Shang et al., 
2018). 

OUTLOOK: FURTHER 
TRAIT COMPLEXES 
FOR HOLOGENOMIC 
BREEDING
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Other studies have considered the 
GIT microbiota in terms of complex 
behavioral characteristics such 
as feather pecking or aggressive 
pecking (e.g., van der Eijk et al., 2020, 
Borda-Molina et al., 2021, Mindus et 
al., 2021). The authors argued that 
certain microorganisms in the GITs 
of animals can influence behavior 
or stress response via hormonal 
changes through the gut-brain axis. 

A broader consideration of social or 
hormonally influenced behaviors in 
relation to microbiota composition 
may become more important in the 
future. 

However, such concepts still need 
substantial research. Further 
development or increased research 
in the field of hologenomic selection 
for metabolic and digestive efficiency 
could possibly also enable a better 
understanding of the current welfare 
debate in poultry breeding. 

An example could be keel bone 
fractures in laying hens, since 
phosphorus utilization is influenced 
by the gut microbiota (Haas et 
al., 2022; Vollmar et al., 2020) and 
tibia and foot ash have significant 
microbiabilities (not yet published).

The collection of gastrointestinal 
microbiota data for trait prediction 
is not easy to capture, and for 
some phenotypic observations, the 
useability of simple fecal samples is 

restricted. The main absorption in the 
GIT takes place in the small intestine. 
However, microbiota sampling in 
this section on live animals is invasive 
or can only be cultured from dead 
animals, which is why fecal samples 
are used in many studies (e.g., Déru 
et al., 2022b). 

A potential way would be the 
prediction of microbial information of 
the desired gut section via microbiota 
from noninvasive sampling, e.g., 
cloaca samples. Andreani et al. 
(2020) found, for example, that cloaca 
samples are good for predicting cecal 
microbiota in chickens, which needs 
further investigation.

 Another solution would be to collect 
only standardized DNA samples from 
selection candidates and, together 
with a large reference population 
with known microbiota, host DNA, 
and phenotypic information, predict 
the phenotypes of the selection 
candidate. 

This restricts one to what is possible 
from a breeding point of view. A 
way to do so is the hologenomic 
selection approach discussed 
above. In the future, technical 
sampling solutions such as osmotic 
pills, which are inserted into the GIT 
by mouth and can take samples 
in the desired section using an 
external magnet, may play a role 
(Rezaei Nejad et al., 2019).
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Part of the gastrointestinal 
microbiota is influenced by host 
genetics, which allows for breeding. 
The microbial composition in turn 
influences some quantitative traits, 
and the microbiota thus acts as a 
mediator between host genetics 
and quantitative traits. 

The consideration of the microbial 
composition could therefore be 
worthwhile in breeding approaches. 

Challenges include the expensive 
and laborious microbial 
phenotyping of high numbers 
of animals and the lack of 
understanding of the relationship 
between complex quantitative 
traits and the GIT microbiota.

CONCLUSIONS

|	
To

w
ar

d
 t

h
e 

u
se

 o
f 

h
o

st
 m

ic
ro

b
io

ta
 in

te
rp

la
y 

in
 p

o
u

lt
ry

 a
n

d
 p

ig
 b

re
ed

in
g

LOHMANN INFORMATION 202316 | 



References. 

Aliakbari, A., O. Zemb, Y. Billon, C. Barilly, I. Ahn, J. Riquet, and H. Gilbert. 2021. Genetic relationships 
between feed efficiency and gut microbiome in pig lines selected for residual feed intake. J. Anim. 
Breed. Genet. 138(4):491–507.

Aliakbari, A., O. Zemb, L. Cauquil, C. Barilly, Y. Billon, and H. Gilbert. 2022. Microbiability and microbiome-
wide association analyses of feed efficiency and performance traits in pigs. Genet. Sel. Evol. 54(1):29.

Andreani, N. A., C. J. Donaldson, and M. Goddard. 2020. A reasonable correlation between cloacal and 
cecal microbiomes in broiler chickens. Poult. Sci. 99(11):6062–6070.

Apajalahti, J., A. Kettunen*, and H. Graham. 2004. Characteristics of the gastrointestinal microbial 
communities, with special reference to the chicken. worlds poult sci j 60(2):223–232.

Bergamaschi, M., C. Maltecca, C. Schillebeeckx, N. P. McNulty, C. Schwab, C. Shull, J. Fix, and F. Tiezzi. 
2020. Heritability and genome-wide association of swine gut microbiome features with growth and 
fatness parameters. Sci. Rep. 10(1):10134.

Borda-Molina, D., H. Iffland, M. Schmid, R. Müller, S. Schad, J. Seifert, J. Tetens, W. Bessei, J. Bennewitz, 
and A. Camarinha-Silva. 2021. Gut microbial composition and predicted functions are not associated 
with feather pecking and antagonistic behavior in laying hens. Life (Basel, Switzerland) 11(3).

Borda-Molina, D., J. Seifert, and A. Camarinha-Silva. 2018. Current perspectives of the chicken 
gastrointestinal tract and its microbiome. Comput. Struct. Biotechnol. J. 16:131–139.

Bordenstein, S. R., and K. R. Theis. 2015. Host biology in light of the microbiome: Ten principles of 
holobionts and hologenomes. PLoS biology 13(8):e1002226.

Camarinha-Silva, A., M. Maushammer, R. Wellmann, M. Vital, S. Preuss, and J. Bennewitz. 2017. Host 
genome influence on gut microbial composition and microbial prediction of complex traits in pigs. 
Genetics 206(3):1637–1644.

Chen, C., X. Huang, S. Fang, H. Yang, M. He, Y. Zhao, and L. Huang. 2018. Contribution of host genetics to 
the variation of microbial composition of cecum lumen and feces in pigs. Front. Microbiol. 9:2626.

Christensen, O. F., V. Börner, L. Varona, and A. Legarra. 2021. Genetic evaluation including intermediate 
omics features. Genetics 219(2).

Déru, V., A. Bouquet, O. Zemb, B. Blanchet, M. L. de Almeida, L. Cauquil, C. Carillier-Jacquin, and H. 
Gilbert. 2022a. Genetic relationships between efficiency traits and gut microbiota traits in growing pigs 
being fed with a conventional or a high-fiber diet. J. Anim. Sci. 100(6).

Déru, V., F. Tiezzi, C. Carillier-Jacquin, B. Blanchet, L. Cauquil, O. Zemb, A. Bouquet, C. Maltecca, 
and H. Gilbert. 2022b. Gut microbiota and host genetics contribute to the phenotypic variation of 
digestive and feed efficiency traits in growing pigs fed a conventional and a high fiber diet. Genet. 
Sel. Evol. 54(1):55.

Diaz Carrasco, J. M., N. A. Casanova, and M. E. Fernández Miyakawa. 2019. Microbiota, gut health and 
chicken productivity: What is the connection? Microorganisms 7(10).

Difford, G., J. Lassen, and P. Lovendahl. 2016. Genes and microbes, the next step in dairy cattle breeding. 
In: Wageningen Academic Publishers, editor, Book of Abstracts of the 67th Annual Meeting of the 
European Federation of Animal Science. p. 285.

Estellé, J. 2019. Benefits from the joint analysis of host genomes and metagenomes: Select the holobiont. 
J. Anim. Breed. Genet. 136(2):75–76.

Gianola, D., and D. Sorensen. 2004. Quantitative genetic models for describing simultaneous and 
recursive relationships between phenotypes. Genetics 167(3):1407–1424.

Guevarra, R. B., J. H. Lee, S. H. Lee, M.-J. Seok, D. W. Kim, B. N. Kang, T. J. Johnson, R. E. Isaacson, and H. 
B. Kim. 2019. Piglet gut microbial shifts early in life: causes and effects. J. Anim. Sci. Biotechnol. 10(1):1.

Haas, V., M. Rodehutscord, A. Camarinha-Silva, and J. Bennewitz. 2023 - in revision. Inferring causal 
structures of gut microbiota diversity and feed efficiency traits in poultry using Bayesian learning and 
genomic structural equation models.

Haas, V., S. Vollmar, S. Preuß, M. Rodehutscord, A. Camarinha-Silva, and J. Bennewitz. 2022. Composition 
of the ileum microbiota is a mediator between the host genome and phosphorus utilization and other 
efficiency traits in Japanese quail (Coturnix japonica). Genet. Sel. Evol. 54(1).

|	
To

w
ar

d
 t

h
e 

u
se

 o
f 

h
o

st
 m

ic
ro

b
io

ta
 in

te
rp

la
y 

in
 p

o
u

lt
ry

 a
n

d
 p

ig
 b

re
ed

in
g

| 17 | 



He, Y., F. Tiezzi, J. Jiang, J. Howard, Y. Huang, K. Gray, J.-W. Choi, and C. Maltecca. 2022. Exploring methods 
to summarize gut microbiota composition for microbiability estimation and phenotypic prediction in 
swine. J. Anim. Sci. 100(9).

Huber, K. 2018. Invited review: resource allocation mismatch as pathway to disproportionate growth in 
farm animals - prerequisite for a disturbed health. Animal an international journal of animal bioscience 
12(3):528–536.

Kers, J. G., F. C. Velkers, E. A. J. Fischer, G. D. A. Hermes, J. A. Stegeman, and H. Smidt. 2018. Host and 
environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 9:235.

Khanal, P., C. Maltecca, C. Schwab, J. Fix, M. Bergamaschi, and F. Tiezzi. 2020. Modeling host-microbiome 
interactions for the prediction of meat quality and carcass composition traits in swine. Genet. Sel. Evol. 
52(1):41.

Lu, D., F. Tiezzi, C. Schillebeeckx, N. P. McNulty, C. Schwab, C. Shull, and C. Maltecca. 2018. Host contributes 
to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome 6(1):4.

Maki, J. J., C. L. Klima, M. J. Sylte, and T. Looft. 2019. The microbial pecking order: Utilization of intestinal 
microbiota for poultry health. Microorganisms 7(10).

Maltecca, C., M. Bergamaschi, and F. Tiezzi. 2020. The interaction between microbiome and pig 
efficiency: A review. J. Anim. Breed. Genet. 137(1):4–13.

Maltecca, C., D. Lu, C. Schillebeeckx, N. P. McNulty, C. Schwab, C. Shull, and F. Tiezzi. 2019. Predicting 
growth and carcass traits in swine using microbiome data and machine learning algorithms. Sci. Rep. 
9(1):6574.

Martin, P., V. Ducrocq, P. Faverdin, and N. C. Friggens. 2021. Invited review: Disentangling residual feed 
intake-Insights and approaches to make it more fit for purpose in the modern context. J. Dairy Sci. 
104(6):6329–6342.

Meng, H., Y. Zhang, L. Zhao, W. Zhao, C. He, C. F. Honaker, Z. Zhai, Z. Sun, and P. B. Siegel. 2014. Body weight 
selection affects quantitative genetic correlated responses in gut microbiota. PLoS One 9(3):e89862.

Meuwissen, T., B. Hayes, and M. Goddard. 2016. Genomic selection: A paradigm shift in animal breeding. 
Anim. Fron. 6(1):6–14.

Mignon-Grasteau, S., A. Narcy, N. Rideau, C. Chantry-Darmon, M.-Y. Boscher, N. Sellier, M. Chabault, B. 
Konsak-Ilievski, E. Le Bihan-Duval, and I. Gabriel. 2015. Impact of selection for digestive efficiency on 
microbiota composition in the chicken. PLoS One 10(8):e0135488.

Mindus, C., N. van Staaveren, D. Fuchs, J. M. Gostner, J. B. Kjaer, W. Kunze, M. F. Mian, A. K. Shoveller, 
P. Forsythe, and A. Harlander-Matauschek. 2021. L. rhamnosus improves the immune response and 
tryptophan catabolism in laying hen pullets. Sci. Rep. 11(1):19538.

Momen, M., M. T. Campbell, H. Walia, and G. Morota. 2019. Utilizing trait networks and structural equation 
models as tools to interpret multi-trait genome-wide association studies. Plant Methods 15(1):107.

Pegolo, S., M. Momen, G. Morota, G. J. M. Rosa, D. Gianola, G. Bittante, and A. Cecchinato. 2020. Structural 
equation modeling for investigating multi-trait genetic architecture of udder health in dairy cattle. Sci. 
Rep. 10(1):7751.

Pérez-Cobas, A. E., L. Gomez-Valero, and C. Buchrieser. 2020. Metagenomic approaches in microbial 
ecology: an update on whole-genome and marker gene sequencing analyses. Microb. Genom. 6(8).

Pérez-Enciso, M., L. M. Zingaretti, Y. Ramayo-Caldas, and G. de Los Campos. 2021. Opportunities and 
limits of combining microbiome and genome data for complex trait prediction. Genet. Sel. Evol. 53(1):65.

Puillet, L., D. Réale, and N. C. Friggens. 2016. Disentangling the relative roles of resource acquisition and 
allocation on animal feed efficiency: insights from a dairy cow model. Genet. Sel. Evol. 48(1):72.

Qadri, Q. R., Q. Zhao, X. Lai, Z. Zhang, W. Zhao, Y. Pan, and Q. Wang. 2022. Estimation of complex-trait 
prediction accuracy from the different holo-omics interaction models. Genes 13(9).

Rezaei Nejad, H., B. C. M. Oliveira, A. Sadeqi, A. Dehkharghani, I. Kondova, J. A. M. Langermans, J. S. 
Guasto, S. Tzipori, G. Widmer, and S. R. Sonkusale. 2019. Ingestible osmotic pill for in vivo sampling of gut 
microbiomes. Adv. Intell. Syst. 1(5):1900053.

|	
To

w
ar

d
 t

h
e 

u
se

 o
f 

h
o

st
 m

ic
ro

b
io

ta
 in

te
rp

la
y 

in
 p

o
u

lt
ry

 a
n

d
 p

ig
 b

re
ed

in
g

LOHMANN INFORMATION 202318 | 



Rodehutscord, M., V. Sommerfeld, I. Kühn, and M. R. Bedford. 2022. Phytases: Potential and limits of 
phytate destruction in the digestive tract of pigs and poultry. In: M. R. Bedford, G. Partridge, C. L. Walk, 
M. Hruby, C. Evans, H. Irving, J. Vehmanperä, K. Juntunen, J. Patience, Q. Li, A. Petry, J. Lee, K. Brown, A. 
Cowieson, D. Menezes-Blackburn, R. Greiner, and U. Konietzny, editors, Enzymes in farm animal nutrition. 
CABI, GB. p. 124–152.

Rosa, G. J. M., B. D. Valente, G. de Los Campos, X.-L. Wu, D. Gianola, and M. A. Silva. 2011. Inferring causal 
phenotype networks using structural equation models. Genet. Sel. Evol. 43:6.

Ross, E. M., and B. J. Hayes. 2022. Metagenomic predictions: A review 10 years on. Front. Genet. 13:865765.

Saborío-Montero, A., M. Gutiérrez-Rivas, A. García-Rodríguez, R. Atxaerandio, I. Goiri, E. López de 
Maturana, J. A. Jiménez-Montero, R. Alenda, and O. González-Recio. 2020. Structural equation models 
to disentangle the biological relationship between microbiota and complex traits: Methane production 
in dairy cattle as a case of study. J. Anim. Breed. Genet. 137(1):36–48.

Schmid, M., and J. Bennewitz. 2017. Invited review: Genome-wide association analysis for quantitative 
traits in livestock – a selective review of statistical models and experimental designs. Arch. Anim. Breed. 
60(3):335–346.

Shang, Y., S. Kumar, B. Oakley, and W. K. Kim. 2018. Chicken gut microbiota: importance and detection 
technology. Front. Vet. Sci. 5:254.

Stanley, D., R. J. Hughes, and R. J. Moore. 2014. Microbiota of the chicken gastrointestinal tract: influence 
on health, productivity and disease. Appl. Microbiol. Biotechnol. 98(10):4301–4310.

Tiezzi, F., J. Fix, C. Schwab, C. Shull, and C. Maltecca. 2021. Gut microbiome mediates host genomic effects 
on phenotypes: a case study with fat deposition in pigs. Comput. Struct. Biotechnol. J. 19(2-3):530–544.

van der Eijk, J. A. J., T. B. Rodenburg, H. de Vries, J. B. Kjaer, H. Smidt, M. Naguib, B. Kemp, and A. Lammers. 
2020. Early-life microbiota transplantation affects behavioural responses, serotonin and immune 
characteristics in chicken lines divergently selected on feather pecking. Sci. Rep. 10(1):2750.

Verschuren, L. M. G., D. Schokker, R. Bergsma, A. J. M. Jansman, F. Molist, and M. P. L. Calus. 2020. 
Prediction of nutrient digestibility in grower-finisher pigs based on faecal microbiota composition. J. 
Anim. Breed. Genet. 137(1):23–35.

Vollmar, S., R. Wellmann, D. Borda-Molina, M. Rodehutscord, A. Camarinha-Silva, and J. Bennewitz. 
2020. The gut microbial architecture of efficiency traits in the domestic poultry model species Japanese 
quail (Coturnix japonica) assessed by mixed linear models. G3 (Bethesda) 10(7):2553–2562.

Wang, Y., P. Zhou, X. Zhou, M. Fu, T. Wang, Z. Liu, X. Liu, Z. Wang, and B. Liu. 2022. Effect of host genetics 
and gut microbiome on fat deposition traits in pigs. Front. Microbiol. 13:925200.

Weishaar, R., R. Wellmann, A. Camarinha-Silva, M. Rodehutscord, and J. Bennewitz. 2020. Selecting the 
hologenome to breed for an improved feed efficiency in pigs-A novel selection index. J. Anim. Breed. 
Genet. 137(1):14–22.

Wen, C., W. Yan, C. Mai, Z. Duan, J. Zheng, C. Sun, and N. Yang. 2021. Joint contributions of the gut 
microbiota and host genetics to feed efficiency in chickens. Microbiome 9(1):126.

Wen, C., W. Yan, C. Sun, C. Ji, Q. Zhou, D. Zhang, J. Zheng, and N. Yang. 2019. The gut microbiota is largely 
independent of host genetics in regulating fat deposition in chickens. ISME J. 13(6):1422–1436.

Witzig, M., A. Camarinha-Silva, R. Green-Engert, K. Hoelzle, E. Zeller, J. Seifert, L. E. Hoelzle, and M. 
Rodehutscord. 2015. Correction: Spatial variation of the gut microbiota in broiler chickens as affected 
by dietary available phosphorus and assessed by T-RFLP analysis and 454 pyrosequencing. PLoS One 
10(12):e0145588.

Yadav, S., and R. Jha. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient 
utilization, performance, and health of poultry. J. Anim. Sci. Biotechnol. 10:2.

Yegani, M., and D. R. Korver. 2008. Factors affecting intestinal health in poultry. Poult. Sci. 87(10):2052–
2063.

Zhao, L., G. Wang, P. Siegel, C. He, H. Wang, W. Zhao, Z. Zhai, F. Tian, J. Zhao, H. Zhang, Z. Sun, W. Chen, 
Y. Zhang, and H. Meng. 2013. Quantitative genetic background of the host influences gut microbiomes 
in chickens. Sci. Rep. 3:1163.

|	
To

w
ar

d
 t

h
e 

u
se

 o
f 

h
o

st
 m

ic
ro

b
io

ta
 in

te
rp

la
y 

in
 p

o
u

lt
ry

 a
n

d
 p

ig
 b

re
ed

in
g

| 19 | 


