

ZUKUNFT DER EIERPRODUKTION MIT LOHMANN BREEDERS

Die Verlängerung der produktiven Lebensdauer von Legehennen ist zu dem wichtigsten Zuchtziel in der heutigen Legehennenzucht geworden.

Aufgrund des "All-in, All-out"-Produktionssystems bei Geflügel werden immer ganze Herden gleichzeitig ersetzt, anstatt einzelner Tiere wie bei Milchkühen oder Sauen. Dieser strikte Ansatz bedeutet, dass Entscheidungen über die produktive Lebensdauer immer die gesamte Herde betreffen und nicht einzelne Legehennen.

Die Entscheidung, eine neue Herde einzustallen, ist eine wichtige wirtschaftliche Wahl, die mindestens 20 Wochen vor dem voraussichtlichen Ende der aktuellen Herde getroffen sein muss (unter Berücksichtigung von 3 Wochen Brutzeit und 17 Wochen Aufzucht).

Der Schlüssel zu dieser Entscheidung hängt weitgehend vom Leistungsniveau der aktuellen Herde und ihrer erwarteten Entwicklung sowie den Eierpreisen ab. Die wichtigsten Faktoren für eine Entscheidung sind:

(**) Legeleistung (Persistenz)

🞢 Lebensfähigkeit

Eierklassifizierung

Eierqualität (Anteil der aussortierten Eier, z.B. Schalenstabilität)

Die genetischen Parameter dieser Merkmale sind entscheidend für die züchterische Verlängerung der Produktionsperiode. Tabelle 1 zeigt Beispiele für genetische Werte der weißen Legehennenhybride LSL von LOHMANN BREEDERS.

	Prod. 20-27	Prod. 28 -43	Prod. 44-51	Prod. 52-71	Prod. 72-87	Prod. 88-119	Eigewicht	Futteraufnahme	Schalenstabilität
Prod 20-27	.44	.42	.36	.14	.00	03	30	17	01
Prod 28-43		.07	.95	.81	.66	.24	44	11	.18
Prod 44-51			.09	.89	.81	.46	38	08	.11
Prod 52-71				.13	.94	.81	26	.02	.02
Prod 72-87					.24	.90	15	.09	.05
Prod 88-119						.31	19	.12	06
Eigewicht							.76	.61	23
Futteraufnahme								.29	08
Schalenstabilität									.30

[▲] Tabelle 1: Geschätzte Heritabilitätswerte (diagonal) und genetische Korrelationen zwischen wichtigen Leistungsmerkmalen für eine Hahnen-Linie aus dem LOHMANN LSL-Zuchtprogramm

Produktive Lebensdauer in Segmenten

Der Produktionszyklus von Legehennen ist in mehrere Phasen unterteilt: Geschlechtsreife (Wochen 20-27), Legespitze (28-43 Wochen) und die späteren Segmente bis derzeit 119 Wochen.

Interessanterweise steht die Erblichkeit der Legeleistung in umgekehrtem Verhältnis zu dem Leistungsniveau. Die Heritabilität ist in Hochleistungsphasen niedriger, steigt jedoch in späteren Phasen an und erreicht nach 88 Wochen eine Erblichkeit von h2=0,31.

Dies zeigt ein klares Potenzial für genetische Verbesserungen in der Persistenz. Die Phase der Geschlechtsreife (20-27 Wochen) zeigt mit h2=0,44 die höchste Erblichkeit für die Legeleistung.

Während benachbarte Perioden genetisch stark korrelieren, zeigen entfernte Segmente schwächere Verbindungen. Eine leichte negative Korrelation zwischen Geschlechtsreife und Persistenz zeigt, dass diese beiden Merkmale genetisch unabhängig oder in einigen Situationen sogar leicht negativ miteinander verbunden sind.

Eine ausgewogene Selektion kann diese geringe negative Korrelation jedoch ohne Probleme "unter einen Hut bringen".

Merkmal	Genetischer Fortschritt weiße Legehennen	Genetischer Fortschritt braune Legehennen	Durchschnittlicher Unterschied zwischen weißen und braunen Legehennen
Eizahl/AH bei 100 Wochen	+2,0 bis +2,5 Eier	+3,0 bis +3,5 Eier	10-12 Eier zusätzlich bei weißen Legehennen
Prod. (Legeleistung) in der 88107. Lebenswoche	+0,9 bis +1,2 %	+1,4 bis +1,6 %	4-5 % höhere Legeleistung bei weißen Legehennen
Täglicher Futterverbrauch	+0,1 bis +0,3 gr.	+0,1 bis +0,4 gr.	3-4 gr./Tag mehr bei braunen Legehennen
Bruchfestigkeit	+0,3 bis +0,4 Newton	+0,3 bis +0,5 Newton	2-3 Newton mehr bei braunen Legehennen

▲ Tabelle 2: Genetischer Fortschritt pro Generation (realisierter Anstieg basierend auf durchschnittlichen Zuchtwerten nach Schlupfjahr) und Unterschiede in der durchschnittlichen Leistung zwischen weißen und braunen Legehennen

Genetischer Fortschritt pro Jahr und Unterschiede zwischen weißen und braunen Legehennen

In den letzten zehn Jahren haben wir bemerkenswerte Fortschritte in der Lebensdauer von Legehennen gesehen, trotz des Wechsels zu alternativen Haltungssystemen wie Volieren und Freilandhaltung.

Heute erreichen braune Hennen eine durchschnittliche Lebensdauer von 85 Wochen, und weiße Legehennen 90-95 Wochen - alles ohne Mauser und in Käfighaltung sogar länger. Es kommt auch immer öfter vor, dass gute weiße Herden über 110 Wochen alt werden.

Dieser Fortschritt setzt sich stetig fort, wobei Hennen jedes Jahr etwa eine halbe Woche an Lebenserwartung gewinnen.

Mit Blick auf die Zukunft werden Faktoren wie das Verbot der Kükentötung und die Kosten für die Geschlechtsbestimmung von Embryonen wahrscheinlich zu noch längeren Legezeiten führen.

Selektion auf Robustheit

Bei LOHMANN passen wir unser Zuchtprogramm an Herausforderungen der modernen Eierproduktion an. Mit längeren Legeperioden und der fortschreitenden Umstellung auf alternative Systeme sind Robustheitsmerkmale jetzt wichtiger denn je.

Der Fokus liegt hier auf Federstabilität und Mortalität. Während es keine starke negative Korrelation zwischen Legeleistung und Robustheitsmerkmalen gibt, besteht eine leichte negative Beziehung Eigewicht. Das Eigewicht zum und produzierte Eimasse pro Tag haben eine bedeutende Rolle für die Stoffwechselbelastung Henne. der

In unserem Zuchtprogramm erfassen wir diese Merkmale in zwei verschiedenen Umgebungen, nämlich auf Reinzucht- und Praxis-Farmen.

Auf Reinzuchtfarmen

Gefiederstabilität und Leistungsfähigkeit unter anspruchsvollen Bedingungen gemessen, darunter auch unter erschwerten Futterbedingungen.

Diese Bewertungen werden sowohl in kleineren Familiengruppen als auch in größeren Abteilen durchgeführt. Ein besonderes Augenmerk wird auf die Schnabelform gelegt, um Gefiederschäden durch Federpicken zu minimieren.

Auf Praxisi-Produktionsfarmen

Nachkommen von Zuchttieren mit entsprechender Pedigree-Abstammung (Zwei-Linien-Kreuzungen) werden unter praktischen Bedingungen getestet. Diese Tiere liefern Daten verschiedenen Bedingungen, nicht nur geschlossene Häuser in gemäßigten Klimazonen, sondern auch offene Häuser in heißen Klimazonen wie z.B Brasilien.

Die Ergebnisse fließen direkt in den ein, der darauf abzielt, Selektionsprozess sowohl die Leistung als auch die Robustheit unter realen Bedingungen zu verbessern. Die Selektionskriterien konzentrieren sich auf die Ausgewogenheit dieser Eigenschaften, wobei Familien, die in beiden Bereichen (Leistung und Robustheit) im oberen Drittel liegen, bevorzugt für die nächste Generation ausgewählt werden.

Dieser Ansatz ist besonders wichtig für längere Produktionszyklen, da uns ermöglicht, Hennen auszuwählen, die sich sowohl durch Leistung als auch durch Robustheit auszeichnen.

Rekorde brechen: 600 Eier in 120 Wochen!

Stellen Sie sich eine Legehenne vor, die 600 Eier in 120 Wochen produzieren kann - alles in einem Zyklus ohne Mauser! Es ist kein ferner Traum mehr - es ist unsere neue Realität für alle Varianten der LOHMANN LSL-LITE. Unser kontinuierlich verbessertes Zuchtprogramm bei LOHMANN BREEDERS hat diese außergewöhnliche Leistung möglich gemacht.

Wir sind stolz darauf, eine neue Ära in der nachhaltigen und effizienten Eierproduktion ankündigen zu können - die Zukunft der Legehennengenetik, mit Ihnen! Breeding for success...together!

LOHMANN BREEDERS

It's the egg - it's 600!

www.lohmann-breeders.com

BREEDING FOR SUCCESS... TOGETHER

